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Long-term memory is ubiquitous in nature and has important consequences for the occurrence of natural
hazards, but its detection often is complicated by the short length of the considered records and additive white
noise in the data. Here we study synthetic Gaussian distributed records xi of length N that consist of a
long-term correlated component �1−a�yi characterized by a correlation exponent �, 0���1, and a white-
noise component a�i, 0�a�1. We show that the autocorrelation function CN�s� has the general form CN�s�
= �C��s�−Ea� / �1−Ea�, where C��0�=1, C��s�0�=Bas−�, and Ea= �2Ba / ��2−���1−����N−�+O�N−1�. The
finite-size parameter Ea also occurs in related quantities, for example, in the variance �N

2 �s� of the local
mean in time windows of length s: �N

2 �s�= ���
2 �s�−Ea� / �1−Ea�. For purely long-term correlated data

B0��2−���1−�� /2 yielding E0�N−�, and thus CN�s�= � �2−���1−��
2 s−�−N−�� / �1−N−�� and �N

2 �s�
= �s−�−N−�� / �1−N−��. We show how to estimate Ea and C��s� from a given data set and thus how to obtain
accurately the exponent � and the amount of white noise a.
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I. INTRODUCTION

Long-term correlations are ubiquitous in nature. They oc-
cur, for example, in climate �1–9�, physiology �10–12� and
financial markets �13,14�, and possibly also in earthquakes
�15,16�. Long-term memory has important consequences for
the occurrence of extreme events. Since the return intervals
between consecutive events above some threshold q are also
long-term correlated, long-term memory leads to a clustering
of extreme events and thus is important for risk estimation
�17�.

The most direct quantities that characterize the long-term
memory in records of a given length N are the autocorrela-
tion function �ACF� CN�s� and the variance of the local mean
of s successive data points �N

2 �s�. For N→� both quantities
scale as s−� with 0���1. Usually the observational records
of interest have a length between N=103 and N=105 data
points. It is known that in these comparatively short records
an accurate determination of �, via CN�s� or �N

2 �s�, is diffi-
cult to achieve, in particular when � is small.

To test for long-term memory, one thus is led to use less
direct methods as, e.g., the various detrending fluctuation
�12,18–20� and wavelet techniques �21�, which also have the
advantage of eliminating polynomial trends in the data. In
the presence of considerable additive white noise �see Eq. �2�
with a close to 1�, these methods usually cannot be used and
thus one has to rely solely on the ACF �19,20�.

In this paper we focus on CN�s� and �N
2 �s�. We derive an

analytical expression for the a, �, N, and s dependences of
CN�s�, which shows how CN�s� is related to the ACF in the
thermodynamic limit. We describe how to extract C��s� and
thus the proper � value as well as the amount of white noise
a from the data. We also derive a simple scaling relation
between CN�s� and �N

2 �s� and show this way that both quan-
tities are fully equivalent, with the same information content.

II. FINITE-SIZE EFFECTS IN THE ACF

We consider a long-term correlated, equidistant record of
N data xi, i=1, . . . ,N with the mean �x	N= 1

N
i=1
N xi and the

variance �N
2 = 1

N
i=1
N �xi− �x	N�2. The ACF is defined as

CN�s� =
1

�N
2 �N − s�
i=1

N−s
�xi − �x	N��xi+s − �x	N� , �1�

with CN�0�=1. In the limit of N→�, CN�s� scales as C��s�
�s−�, where 0���1 is the correlation exponent.

To study CN�s� we have generated, for several values of �,
ten data sets with length N=221 by the classical Fourier
transform technique �see �22�� and divided these sequences
into �i� 10	23 subsequences of length N=218, �ii� 10	25

subsequences of length N=216, and �iii� 10	27 subse-
quences of length N=214. When calculating the ACF we av-
eraged over all subsets of fixed length, such that the statistics
do not depend on the length N of the data sets.

Figure 1�a� shows the resulting ACF for �=0.4 and N
=221, 218, 216, and 214 �upper set of curves from top to bot-
tom�. For comparison, the dashed straight lines show the
expected power-law behavior of C��s�. While for the longest
data set the ACF shows approximately the expected slope;
the ACF bends down for the shorter data sets. This effect
becomes stronger with decreasing system size N.

Figures 1�b�–1�d� show the same results for �=0.3, 0.2,
and 0.1. For decreasing � the finite-size effect increases. Es-
pecially for �=0.1 the finite-size effect is so strong that even
for N=221 the curve does not exhibit the correct slope. For
all four curves the effective exponent, measured between s
=101 and 102, is between 0.2 and 0.3 instead of 0.1.

Next, we consider noisy records xi, i=1, . . . ,N, which
consist of a mixture of long-term correlated data yi and un-
correlated data �white noise� �i, i.e.,

xi = �1 − a�yi + a�i, �2�

where ��	N= �y	N= ��y	N=0 and ��2	N= �y2	N=1. The results
for a=0.8 are shown in Figs. 1�a�–1�d�, lower sets of curves.*sabine.lennartz@uni-giessen.de
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For the ACF, the additive noise results in a vertical shift in
the double logarithmic plot, and the finite-size effects are
nearly the same as for the data without white noise.

We like to note that the correlation exponent � can also be
determined from fluctuation functions F2�s�, which are either
related to the variance �N

2 �s� �see Sec. IV� or have been
obtained from detrending techniques such as the DFA
�12,18–20�. For purely long-term correlated data F2�s� scales
as F2�s��s2
, with 
=1−� /2 and an accurate determination
of � is possible. This changes in the presence of additive
white noise where an extra term �s occurs in F2�s�. When
the white noise is dominant then this term contributes con-
siderably to F2�s� also for large s values, making a determi-
nation of � impossible �19,20�.

A further method to detect � is to calculate the power
spectrum S�k� which scales as S�k��k−�1−�� for purely long-
term correlated data. For additive white noise a constant
value is added. If the white noise is sufficiently large, �
cannot be obtained from the decay of S�k� at small k values.

Accordingly, in the presence of white noise, the ACF
method is the only method to detect long-term correlations,
irrespective of its pronounced finite-size effects. In the fol-
lowing, we derive an analytical expression for CN�s�, which
allows to overcome these finite-size effects and thus to iden-
tify the long-term memory as well as the amount of the ad-
ditive white noise.

III. ELIMINATING FINITE-SIZE EFFECTS IN THE ACF
AND DETERMINATION OF THE AMOUNT OF

ADDITIVE WHITE NOISE

To identify the origin of the finite-size effects in the ACF,
we consider the identity

0 =
1

N2�N
2 


l,m=1

N

xlxm −
�x	N

2

�N
2

=
1

N2�N
2 


l,m=1

N

�xl − �x	N��xm − �x	N�

=
1

N
+ 


s=1

N−1
2�N − s�CN�s�

N2 , �3�

which results in the sum rule



s=1

N−1
2�N − s�

N
CN�s� = − 1. �4�

We like to note that this relation holds in general, irrespec-
tive of the kind of correlations and distributions considered.
It is clear that this sum rule cannot be satisfied for any ACF
with CN�s� positive. In particular, it is inconsistent with the
assumption CN�s�=�s,0 for uncorrelated records �a=1� and
with the assumption that the ACF of a long-term correlated
record of length N has the form CN�s�=C��s�, with

C��s� = �1 ,s = 0

Bas−� ,s � 0.
 �5�

For noisy long-term correlated records �Eq. �2��,

Ba = B0�1 − a�2/�a2 + �1 − a�2� � B0p , �6�

where B0 refers to the pure long-term correlated record �a
=0�. It is easy to verify that the ansatz

CN�s� =
1

1 − E
�C��s� − E� , �7�

with

E =
1

N
+ 


l=1

N−1
2�N − l�

N2 C��l� �8�

satisfying the sum rule �Eq. �4��. For uncorrelated records,
Eq. �7� reduces to CN�s�=�s,0− 1

�N−1� �1−�s,0�.
For finite records with long-term memory, E may become

of the order of unity and cannot be neglected. Substitution of
Eq. �8� into Eq. �7� yields the general relation

CN�s� =
C��s� − 1

N − 
l=1

N−1 2�N−l�
N2 C��l�

1 − 1
N − 
l=1

N−1 2�N−l�
N2 C��l�

, �9�

which replaces C��s� for data sets of finite length N.
We like to note that Eqs. �7�–�9� are general and hold for

all functions C��s�, for which the sum in Eq. �8� tends to
zero in the thermodynamic limit N→�.

In the following, we assume that the data are described by
Eq. �2�, and thus C��s� is described by Eq. �5�. In this case,
E�Ea becomes

Ea =
1

N
+ Ba


s=1

N−1
2�N − s�

N2 s−�. �10�

For N�1, one can easily verify that
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FIG. 1. �Color online� Autocorrelation function CN�s� of long-
term correlated records xi with correlation exponent �a� �=0.4, �b�
�=0.3, �c� �=0.2, and �d� �=0.1 and lengths N=221, 218, 216, and
214 �from top to bottom� without white noise �upper sets of curves�
and with 80% white noise �lower sets of curves�. The dashed lines
are power laws with exponent −� for comparison.
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Ea =
2Ba

�2 − ���1 − ��
N−� + O�N−1� �11�

�Ba� sx

N
��

, �12�

with

sx = � 2

�2 − ���1 − ���
1/�

. �13�

Accordingly, CN�s� becomes

CN�s� =
Ba

1 − Ba�sx/N��s−��1 − � ssx

N
��� , �14�

with Ba from Eq. �6�. Equation �14� shows, how the autocor-
relation function CN�s�, up to O�N−1�, depends on N, �, s,
and the amount of white noise a in the data. In the following,
we suggest a method how the exponent � and the prefactor
Ba can be determined efficiently. Then we determine B0 as a
function of � and show how to determine a from the data set.

According to Eq. �14�, deviations from the power-law be-
havior become large when the expression in the brackets
significantly deviates from 1, for example, when it is equal to
�1−��. This happens for s�k�� ,��N with k�� ,��=�1/� /sx.
For a simple estimate, we choose �=1 /5. Then for �=0.1,
0.2, 0.3, and 0.4 we have k�� ,1 /5��2	10−8, 6	10−5, 8
	10−4,and 3	10−3, respectively. Accordingly, for N of the
order of 105, k�� ,1 /5�N is well above unity only for �
0.4, and only in this case one can obtain a good guess of �
from the initial slope of CN�s� obtained in the first decade �as
can be seen in Fig. 1�a��. For smaller �-values, however, the
finite-size effects are so strong that even in very large records
of length 106 the proper exponent � cannot be observed. In
this case, to extract � �and thus sx� from Eq. �14�, we have to
take into account the functional form of CN�s� in the whole s
regime. To do this in the most efficient way, we consider
CN�s� for three s values, s1, s2, and s3=s2

2 /s1, and combine
them. This yields

CN�s1� − CN�s2�
CN�s2� − CN�s2

2/s1�
=

s1
−� − s2

−�

s2
−� − �s2

2/s1�−�
= �s2/s1��, �15�

and thus

� =
ln� CN�s1�−CN�s2�

CN�s2�−CN�s2
2/s1� �

ln�s2/s1�
. �16�

For obtaining a reliable numerical estimation for �, it is nec-
essary to consider pairs �s1 and s2� such that the differences
in Eq. �16� are not too small. This can be achieved, for ex-
ample, by s1=1 �or 2� and s2 well above 10, but such that

s2
2 /s1�N. When � is known, the parameter Ba can also be

extracted from Eq. �14�,

Ba =
CN�s�

s−� − �sx/N���1 − CN�s��
, �17�

�CN�s�s��1 + �sx/N���1 − CN�s��� , �18�

which then yields Ea with Eq. �10�.
We have applied this approach to our long-term correlated

data with �=0.4, 0.3, 0.2, and 0.1, each with length N=221,
218, 216, and 214, and with and without additive white noise
�a=0.8 and 0�. As before, in order to keep the statistics the
same, we averaged CN�s� over 10, 10	23, 10	25, and 10
	27 records of length N=221, N=218, N=216, and N=214,
respectively. To obtain � we used Eq. �16�, where we aver-
aged over the pairs �s1 and s2� with s1=1, s2
=15,16,17, . . . ,25 and s1=2, s2=16,18,20, . . . ,34. To ob-
tain Ba, we then used Eq. �17�, where we averaged over the
first 50 s values, respectively.

Figure 2 shows the result for �1−Ea�CN�s�+Ea, which
should be identical to C��s�. In the figure the curves for
different data lengths cannot be distinguished since they all
collapse, for each � value, to a single line. The dashed lines
are power laws with exponent −� for comparison. In all
these figures �1−Ea�CN�s�+Ea shows the expected power-
law behavior, confirming Eqs. �7� and �14�.

Next, we show how the amount of white noise a can be
determined. Using Eq. �6� we obtain

a = �1 + �Ba/�B0 − Ba��−1 �19�

when Ba and B0 are known. To determine B0, we utilize Eq.
�12� and plot �in Fig. 3� E0 as a function of N−� for �=0.1,
02, 03, 04, 0.6, and 0.8, and N=221, 218, 216, and 214. The
figure shows that all data collapse to a single line with slope
1, which then yields
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FIG. 2. �Color online� �1−Ea�CN�s�+Ea for the same long-term
correlated records xi as in Fig. 1. The curves for different datal-
engths collapse. The dashed lines are power laws with exponent −�
for comparison.
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B0 � sx
−� =

�2 − ���1 − ��
2

. �20�

Thus we obtain for CN�s�, in the absence of additive white
noise, the remarkable simple result

CN�s� =
1

1 − N−�� �2 − ���1 − ��
2

s−� − N−�� . �21�

By measuring Ba via Eq. �17� and using Eqs. �19� and �20�,
we can directly obtain the amount of white noise in the data.

We like to note, that this procedure also can be done in the
presence of weak trends, which by definition affect CN�s�
only for very large s values. This is obvious for �0.4,
where for obtaining � and Ba only the initial slope of CN�s�
in the first decade is needed. For smaller � values, the detec-
tion of � is more difficult within the proposed method and
can only be done for very weak trends where CN�s2

2 /s1� is not
affected by the trend.

IV. FINITE-SIZE EFFECT IN RELATED QUANTITIES

Next we consider the variance of the local mean of s
successive data points,

�N
2 �s� =��1

s


i=1

s
�xi − �x	N�

�N
�2� , �22�

where the average has been taken over all windows of size s
in the record. By definition, RN

2 �s�=s2�N
2 �s� can also be in-

terpreted as the mean-square displacement of a random
walker along a linear chain where ��xi− �x	N� /�N� is the
length of the ith step and its sign determines the direction. In
this interpretation, we are interested to see how the mean-
square displacement RN

2 �s� of the random walker depends on
the time lag s and on the total number of time steps N he
performed.

We like to note, that RN�s� is identical to the FA fluctua-
tion function, which has been used before to detect �, and in

conjunction with the DFA, possible trends in the data
�5,9,18�.

To find the way �N
2 �s� depends on N we start from the

identity

�N
2 �s� =��1

s


i=1

s
�xi − �x	N�

�N
�2� =

2

�N
2 s2 


m=1

s−1



i=1

s−m

��xi − �x	N�

	�xi+m − �x	N�	 +
1

s
=

2

s2 

m=1

s−1

�s − m�CN�m� +
1

s
. �23�

Substituting Eq. �7� in Eq. �23� we obtain the general rela-
tionship

�N
2 �s� =

1

1 − E
���

2 �s� − E� , �24�

where

��
2 �s� = �1 ,s = 1

2

s2 

m=1

s−1

�s − m�C��m� +
1

s
,s � 1� �25�

is the variance of the local mean in the limit of N→�.
For C��m� from Eq. �5� it can be shown easily that up to

an error of O�Ba�s−1�, ��
2 �s� is given by

��
2 �s� � Ba� s

sx
�−�

+ s−1�1 − Basx
�� �26�

with sx from Eq. �13�.
For purely long-term correlated data, B0sx

��1 �see Eq.
�20��, which yields ��

2 �s��s−� and

�N
2 �s� =

s−�

1 − N−� �1 − �s/N��� , �27�

as well as

RN
2 �s� =

s2−�

1 − N−� �1 − �s/N��� . �28�

Equations �27� and �28� show that the finite-size effects in
�N

2 �s� and RN
2 �s� are smaller than the finite-size effects in

CN�s� �since sx�1, compare with Eq. �14�� but still large.
This fact has already been observed earlier �without knowing
the exact form of �N

2 �s� or RN
2 �s�� where it was suggested that

RN
2 �s� can only give reliable results for s below N /10 �5�.

Equation �28� shows that for small � values the reliability
regime for s is even smaller.

Figure 4�a� shows �N
2 �s� for the same sets of data as in

Figs. 1 and 2 without additive noise �a=0�. Figure 4�b�
shows �1−E0��N

2 �s�+E0, which should be identical to ��
2 �s�.

The fact that now, for each � value, all curves collapse to the
same curve ��

2 �s� confirms Eq. �24�. The fact that ��
2 �s�

�s−� confirms Eq. �26� and is also a further numerical proof
for Eq. �20�.

From Eqs. �5�, �7�, �24�, and �26�, it is easy to see that
�N

2 �s� and CN�s� are related by the scaling relation
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FIG. 3. �Color online� Finite-size correction E0 �symbols� as a
function of N−� for �=0.8, 0.6, 0.4, 0.3, 0.2, and 0.1, and N=221,
218, 216, and 214. All values of E0 collapse to a single line with slope
1.

SABINE LENNARTZ AND ARMIN BUNDE PHYSICAL REVIEW E 79, 066101 �2009�

066101-4



�N
2 �s� = CN�s/sx� + O�s−1� �29�

in the absence of additive white noise �a=0�. Figure 5�a�
shows that this relation holds quite general not only for large
s values.

In the presence of additive white noise the term �s−1

remains in Eq. �26� and dominates ��
2 �s� for s

� �sx
−� /Ba�1/�1−��. Since in this case Ba�sx

−�p, Eq. �26� be-
comes

��
2 �s� � ps−� + �1 − p�s−1, �30�

and thus

�N
2 �s� − s−1�1 − p�/�1 − E� = CN�s/sx� + O�s−1� �31�

in the presence of additive white noise which extends Eq.
�29�. Figure 5�b� shows that this relation is also valid not
only for large s values.

We like to note finally that in the absence of additive
white noise the relevant parameters � and B0 can be obtained
from both, �N

2 �s� and CN�s� since both quantities are de-
scribed by simple power laws. In the presence of additive
white noise, � and Ba can only be obtained from CN�s� since
the crossover in �N

2 �s� prohibits a straightforward calculation
of these parameters. A similar crossover occurs also in the
DFA fluctuation functions �19,20�, and this is the reason why
� cannot be obtained accurately by DFA for very noisy
records.

V. CONCLUSION

In summary, we have considered synthetic Gaussian dis-
tributed records of lengths N that are in the range of most
observational records. The data consist of a long-term corre-
lated component characterized by a correlation exponent �
and a white-noise component. We have derived analytical
expressions for the ACF CN�s� and the related variance �N

2 �s�
that specify the way these quantities depend on N, �, s,
and the amount of additive white noise a. For purely long-
term correlated records the functional forms become
remarkably simple, CN�s�= � �2−���1−��

2 s−�−N−�� / �1−N−��
and �N

2 �s�= �s−�−N−�� / �1−N−��=CN�s /sx�, with sx
= ��2−���1−�� /2�−1/�.

We have presented a procedure how to obtain C��s� and
��

2 �s� in the thermodynamic limit for data with and without
additive white noise and thus how to extract from CN�s� the
correlation exponent � and the amount of additive white
noise a.

For records characterized by a large amount of white
noise � and a cannot be obtained from ��

2 �s� since ��
2 �s�

exhibits a pronounced crossover behavior �see Eq. �30��.
This crossover behavior occurs also in the fluctuation func-
tions obtained by the DFA �see �19,20��, which therefore
cannot be used to determine these parameters in the case of
very noisy long-term correlated data.

Our analysis was restricted to data in the absence of
trends and additional short-term correlations. But to a certain
extend, the results presented here apply also to these cases.
For example, weak trends only matter at very large scales �so
that our results remain valid at smaller scales�, and short-
term correlations can be eliminated by averaging over time
scales above the short-term correlation time. If this time is
large the averaging procedure strongly reduces the number of
data and thus statistical fluctuations will reduce the accuracy
of the analysis. But this limitation also applies to the other
methods, making it generally difficult to distinguish between
pronounced short-term correlations and long-term memory.
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